
SENIOR DESIGN DEC’24 TEAM 09

Multicore Operational Analysis
Tooling (MOAT)

Anthony Manschula, Alex Bashara, Joseph Dicklin, Hankel Haldin
Client: The Boeing Company
Advisors: Steve VanderLeest (Boeing), Joe Zambreno (ISU), Phillip Jones (ISU)

Department of Electrical and Computer Engineering 2

Project Plan & Management

Department of Electrical and Computer Engineering 3

• Increasing computational demand of avionics programs necessitates higher

performance systems

• Multicore systems can experience interference between shared resources

o Can cause system to stall for access and introduce unpredictable delay

o Practical example: Radio control program interferes with flight control program

• Airworthiness certification: Must bound the worst-case execution time to guarantee

that safety-critical processes complete in a certain amount of time

• How can we create an efficient multicore system while maintaining maximum safety?

Problem Statement

Department of Electrical and Computer Engineering 4

Conceptual Sketch

Figure 1: High-level view of the subsystems that comprise our design

Department of Electrical and Computer Engineering 5

Market Survey & Research

Multicore
Operational

Analysis
Tool (MOAT)

RapiDaemon MASTECS OTAWA (Open
Tool for

Adaptive WCET
Analysis)

Multicore Test
Harness

Pros Open
source, built with
modern
hardware in mind

Designed by a team
of professional
engineers,
specifically, for
compliance testing

Offers timing
analysis software
and multicore
performance
consulting

Open
source, supports
several ISAs (e.g.,
ARM, RISC-V, etc.)

Open source & has
good instructions

Cons Produced under
tight time
deadlines

Closed source
& expensive

Potential
portability issues to
North America

No recent builds,
not well-known

Very old;
development
stopped four years
ago

Figure 2: Market research summary

Department of Electrical and Computer Engineering 6

• Toolset must thoroughly and methodically stress the system in a reproducible way

• Toolset must focus on major points of resource contention (processor time, memory

usage, IO bus usage, etc.)

• Accurately produce potential worst-case scenarios (i.e., a rogue process uses too much

CPU time/memory/IO bandwidth)

• Toolset must collect and analyze performance data to demonstrate an upper bound on

worst-case execution time for our platform

Functional Requirements

Department of Electrical and Computer Engineering 7

• Architecture - System must implement a processor based on the ARMv8 instruction

set

• Form-factor - Single-board computer (Raspberry Pi, Pine64 family, etc.), or FPGA

board with Xilinx UltraScale+ MPSoC (Xilinx ZCU family or similar)

• Hypervisor – Our design must use a type 1 hypervisor (Xen) to partition underlying

system resources

Non-Functional Requirements

Department of Electrical and Computer Engineering 8

User & Developer Knowledge Requirements:

• Working understanding of Linux environments and how they are structured in the

context of embedded systems

• Worst-case execution time and its influencing factors

• Familiarity with multi-core computer architectures, caching, memory, and I/O

User Interface Requirements:

• Command-line utility for automated testing

• GUI for easy interpretation of results by less technical users

Other Constraints and Considerations

Department of Electrical and Computer Engineering 9

Project Risks & Mitigations

Risk Mitigation

Challenges building hypervisor Team leverages industry experts at Boeing

Team lacks info to implement effective
base test cases and interference
generators for the target platform

Selected hardware platform should have
thorough documentation available

Project documentation is insufficient or
ineffective

Ensure that documentation is created and
updated for every task that team
members complete

Project runs into issues regarding handoff
and open-sourcing

Ensure all permissions and licensing are
determined well in advance of the
project's completion

Figure 3: Project Risks & Mitigations

Department of Electrical and Computer Engineering 10

Resource & Cost Estimate

• Primarily a software project

o Linux, Xen, and build tools are open source

• Requires an ARM based development board

o Xilinx ZCU106 - $3,234.00

o Pine ROCKPro64 - $79.99

Department of Electrical and Computer Engineering 11

Project Milestones & Schedule
Deliverable Delivery Date

A report showing functioning hardware along with installation scripts
& documentation

April 5th, 2024

A report outlining the interference channels identified by research April 11th, 2024

Presentation and report showing performance data generated from
interference tests without any mitigations

April 29th, 2024

Comparative analysis report on interference tests with and without
performance mitigations enabled

September 10th,
2024

Application with UI enhancements and a report detailing statistical
analysis of WCET

October 31st, 2024

Figure 4: Project Milestones & Schedule

Department of Electrical and Computer Engineering 12

System Design

Department of Electrical and Computer Engineering 13

• Hardware – Embedded Systems

o Pine ROCKPro64 Single-Board Computer

o Xilinx ZCU106 FPGA Development Board

• Software

o Linux for ARM-based Embedded Systems

§ Yocto Project & PetaLinux

o Hypervisors

§ Xen

Hardware/Software Utilization

Department of Electrical and Computer Engineering 14

• Hardware – Consists of processor cores, memory, I/O, etc.
• Xen Hypervisor – Manages hardware resource allocation to domains (guests) running

on the system
• Domain 0 (Dom0) - Linux environment manages configuration and operation of guest

domains (DomU's), runs user interface utilities, and performs system performance
monitoring

• Guest Domains (DomU) - Hosts interference generators in bare metal and Linux
environments

• Interference Generators – Generate resource contention in shared hardware, such as
L2 cache or main memory

Component Decomposition

Department of Electrical and Computer Engineering 15

Block-Level System
Diagram

How do the system

components interact?

Figure 5: Block-Level System Diagram

Department of Electrical and Computer Engineering 16

• A system with a functioning installation of Xen is critical

to executing our project and fulfilling requirements

• Yocto Project and PetaLinux

o Common frameworks for building embedded Linux

images for ARM-based platforms

o Not trivial: Including Xen in these builds requires

hardware-specific changes

o The team has documented processes and created

scripts to ease future build efforts

Building Blocks – Xen Hypervisor

Figure 6: Image configuration and build process

Department of Electrical and Computer Engineering 17

Building Blocks – How is Interference Created?

• Caused by simultaneous utilization of shared resources both on and off the SoC

o e.g., Cache, Memory, I/O

• A process on one core may have to wait for a process on another core to finish its task

o Can lead to delays in processing

• One core may evict data that is needed by another core

o Causes more cache misses and longer memory access times

• Can force interference by abusing the processor architecture and structure

Department of Electrical and Computer Engineering 18

Figure 7: RK3399 SoC Shared Resource Diagram

Department of Electrical and Computer Engineering 19

Test Cases – Interference Case Development (1/2)

• Interference test cases are designed to induce maximum contention in the target

resource

o Goal: Create a worst-case scenario for our control/base program as it also tries to

utilize that resource

• How do we make sure our test cases are effective?

o Performance profiling

§ CacheGrind – Cache simulation: hits, misses, memory access

§ PERF – Measure hardware performance counters

Department of Electrical and Computer Engineering 20

Test Cases – Interference Case Development (2/2)

CacheGrind simulation for an interference generator provides estimated instruction and

data cache hits and misses for a particular piece of code:

Figure 8: Excerpt of source code of work-in-progress memory interference generator

Figure 9: CacheGrind simulation output for source in Figure 8

Department of Electrical and Computer Engineering 21

Conclusion

Department of Electrical and Computer Engineering 22

Current Project Status

• Hardware bring up proved to be more time consuming than we initially anticipated

o Largely due to the time investment of researching and debugging hardware issues

o We still managed to get a functioning system (April 5th vs. April 14th)

• Despite overlap, we continued our research on each candidate platform

o This allowed us to make progress developing base cases for our platform

• Developed a strong foundation to continue stress test program development

o Interference testing report will be completed when class resumes in the fall

(originally April 29th)

Department of Electrical and Computer Engineering 23

Task Responsibility and Contributions

• Anthony Manschula – Project Coordinator and Memory Engineer

• Alexander Bashara – Embedded and Cache Engineer

• Hankel Haldin – Platform Bring-up Engineer

• Joseph Dicklin – I/O Engineer

Department of Electrical and Computer Engineering 24

Plans for Future Work

• Generate interference

• Mitigate interference

• Create a frontend user interface

• Explore other forms of interference

o Cache Coherency

• Identify existing gaps in preparation for project hand-off

Department of Electrical and Computer Engineering 25

Questions?

Department of Electrical and Computer Engineering 26

Supplemental Material

Department of Electrical and Computer Engineering 27

Important Engineering Standards and Advisories

• FAA AC20-193

o This advisory is concerned with the use and compliance of multi-core processors

in avionics systems.

• CAST-32A

o Position paper arguing on safety, performance, and integrity of airborne software

operating on multicore systems.

• ARINC 653

o Defines acceptable methods of resource partitioning on hardware running

avionics programs

Department of Electrical and Computer Engineering 28

Users

• Avionics Engineers

o Responsible for developing and validating avionics systems

o Need a stress testing tool for their ARM-based hardware development platform

§ Allows for effective validation of their work as engineers

• Avionics Engineering Managers

o Manage a team of Avionics Engineers

o Provide evidence that the projects they are managing can be certified under

military and civilian authority

Department of Electrical and Computer Engineering 29

Project Timeline (Gantt Chart)

Department of Electrical and Computer Engineering 30

Project Timeline (Gantt Chart)

Department of Electrical and Computer Engineering 31

Hardware Selection Matrix

• Selection process involved evaluating

several different platforms for cost,

features, and support for the tools

necessary for our project

Department of Electrical and Computer Engineering 32

GUI Example

Department of Electrical and Computer Engineering 33

Source Code of Mem Stress Program

Department of Electrical and Computer Engineering 34

Example Perf Output

